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ÆRHIC Spin Params for Diff. Species �

p 2
1H

+ 3
1H

+ 3
2He+2

M [GeV/c2] 0.938272 1.875613 2.808921 2.808391
µ/µN 2.792847 0.857438 2.972962 -2.127498
G = (g − 2)/2 1.792847 -0.142987 7.918171 -4.183963
mc2/G [MeV] 523.3 -131117 354.7 -671.2
(p/q)inj [Tm] 79.367 80.704 57.819 55.216
Uinj [GeV] 23.812 24.267 17.560 33.226
Uinj/n [GeV] 23.812 12.134 5.853 11.075
γinj 23.379 12.938 6.251 11.831
Gγinj 45.500 -1.850 49.500 -49.500
(p/q)max [Tm] 833.904 833.904 833.904 833.904
Umax [GeV] 250.000 250.005 250.014 500.004
Umax/u [GeV] 250.000 125.003 83.338 166.668
γmax 266.447 133.293 89.007 178.039
Gγmax 477.699 -19.059 704.773 -744.910
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ÆTrajectory and Spin through Snakes �
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Æ Scaling RHIC Snake for Deuterons �
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Trajectory for 250 GeV 2H+.

Even if we could build these magnets, we couldn’t inject.
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ÆProblem with deuterons in RHIC �

• G is too close to zero for deuterons.

• Snakes not strong enough to do anything.
• At top energy 250 GeV helix precession angles ∝∼B2.

• Strength ∼ 4 T
100 T ∼ 0.16%.� Tracking gives a snake strength of 0.06%.

◦ For more $$$ perhaps we might get be able to build a 30 m long large
aperture partial snake with a strength of a few percent?

◦ AC dipole to flip at strong intrinsic resonances probably not practical.

◦ Spin rotators have the same scaling problem as snakes.

• Bottom line: Polarized deuterons in RHIC will be very hard.
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ÆRHIC snakes with He-3 at injection �
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• Injection: U = 33.226 GeV

• Aperture looks fine: ∆y < 3cm. -1
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ÆRotators and D0-DX Bends for protons �
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ÆComparison of Rotators for 3He and p �

Spin rotator contours for protons
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• Rotators easier to rotate vertical spin into any direction in horizontal plane.
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Æ Intrinsic Resonances in RHIC �
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Æ Intrinsic Resonances in AGS �
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ÆHe3 Spin Resonances in Booster �

• Intrinsic resonances:
0 + ν: |Gγ| = 4.54 with ε = 0.11 K = (γ − 1)mc2 = 239 MeV

12 − ν: |Gγ| = 7.46 with ε = 0.009

• Can extract just before 12 − ν.

• Injection will be at |Gγ| = 4.187 which is below 0 + ν

• There are also the imperfection resonances at 5, 6, and 7 to contend with.
• More harmonic corrections.
◦ Do we need an ac dipole or lower extraction energy?

U/n[GeV] γ Gγ p/q[Tm]
Booster inj 1.030 1.100 -4.6036 2.150
AGS inj 1.678 1.793 -7.5000 6.968
RHIC inj 11.075 11.831 -49.5000 55.216
RHIC max 166.668 178.039 -744.9100 833.904

• 3He+2, like heavy ions, injects into RHIC below transition: γt ≃ 22.9.
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ÆAGS to RHIC transfer line �
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ÆMatching Helions from AGS to RHIC �
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ÆNeed Polarimetry Development for He3 �

• Equivalent of p+C CNI polarimeters:
• Possibility of 3He+C CNI polarimeters.

T. L. Trueman, “CNI Polarimetry with 3He”, arXiv:0710.3380v1

(2007).
Can we use the same geometry as for protons?

• Equivalent of H-jet p+p polarimeter for absolute polarization:
• 3He-jet polarimeter might be feasible.

Can we have a good calibration of the jet polarization?

• Must have local (relative) polarimeters at STAR and PHENIX.

• Need to have a workshop on 3He polarimetry for RHIC.
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Æ Summary �

� Deuterons very hard in RHIC — perhaps in a figure-8 ring.Ǒ He3 looks promising: no real show stoppers.
• Source: 3He+2 OPPIS source — proposal: Milner/Zelenski

See Anatoli Zelenski’s presentation.
• |Gγ|max is higher for He3:

• More and Stronger resonances in all rings.
◦ 3He polarimeters need to be developed.
• AGS cold snake may be sufficient at lower field.

AGS warm snake (fixed field) might be too strong (∼ 14%).
• AGS injection and extraction spin-matching: not too bad.

◦ Booster to AGS may need matching (depends on AGS snakes).
• RHIC snakes and rotators will work with lower fields.
• Lower injection rigidity for RHIC should be OK.

• Injection orbit excursions reduced.
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Backup slides follow
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ÆAccelerator Complex (Pol. Protons) �

RHIC

AGSLINAC

BOOSTERSOURCE

LINAC: Linear Accelerator
AGS: Alternating Gradient Synchrotron
RHIC: Relativistic Heavy Ion Collider
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Æ Spin precession equations �

• In rest system: d~S⋄

dt⋄
= ~µ⋄ × ~B⋄ with ~µ⋄ = gq

2m
~S⋄.

• Thomas-Frenkel-BMT equation and Lorentz force (covariant form):

dSµ

dτ
= e

m

[

g
2F

µν + g−2
2 (Fµν + uµ F νκuκ)

]

Sν

duµ

dτ
= e

m
Fµνuν

• T-F-BMT in weird hybrid system (fields in lab; spin at rest):

d~S⋄

dt
= − q

γm

[

(1 +Gγ) ~B⊥ + (1 +G) ~B‖ +
(

Gγ + γ
γ+1

)

~E×~v
c2

]

× ~S⋄

G = g−2
2

Warning: Need to be very careful with what ⊥ and ‖ mean.
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ÆAnomalous magnetic moment factor �

Calculate g from

g =

(

µ

µN

)

× µN × 2M

Zeh̄I
.

G =
g − 2

2

• µ = g Ze
2M

h̄I where I is the nuclear spin quantum number.

• Nuclear magneton: µN = eh̄/2mp = 31.524512 × 10−9[eV/T]

• Masses, h̄, etc. from NIST 2006 CODATA
(http://physics.nist.gov/cuu/Constants/index.html)

• Ratios of magnetic moments to nuclear magneton from N. J. Stone, “Table
of nuclear magnetic dipole and electric quadrupole moments”, in Atomic

Data and Nuclear Data Tables 90, 75 (2005).
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Æ SU(2) group generators in rest system �

Spin-1
2 (s = 1

2 ) ~σ:

(

0 1
1 0

)

,

(

0 −i
i 0

)

,

(

1 0
0 −1

)

(Pauli matrices)

Spin-1 (s = 1) ~σ: 1√
2





0 1 0
1 0 1
0 1 0



 , 1√
2





0 −i 0
i 0 −i
0 i 0



 ,





1 0 0
0 0 0
0 0 −1





dψ⋄

dτ
=
i

h̄

gq

2m
(~S⋄ · ~B⋄)ψ⋄ with spin operator: ~S⋄ = h̄I~σ

ψ⋄(τ) = eiκ( ~B⋄·~σ)τψ⋄(0) for a constant ~B⋄

κ =
gq

2m
I
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ÆHigher spins than spin-1/2 �

T-F-BMT does not cause quantum photon transitions between states.

Protons in RHIC: τST = 3 × 1012 yr; τST ∝
(

m
Z

)2
γ−5

Spin-1 spinor: ψ =





a
b
c



; T-F-BMT rotates only a and c components.

• ms = 0 component b remains unaffected.

Spin-3/2: ψ =







a
b
c
d







• ms = ±3/2 components (a and d) rotate together;

• ms = ±1/2 components (b and c) rotate together;

• No radiative transitions between |ms| = 3/2 with |ms| = 1/2.


 21� Machine Advisory Committee Review
Waldo MacKay 15 September, 2010



ÆFormulae for helical dipoles �

Parameters for a single RHIC rotator helix [Mike Syphers: SN020]

Pitch: k = 2π
λ
, λ = 2.41 m [+(−) for right(left)-handed]

κ = q
p
(1 +Gγ)B (simple analytic scaling ignoring longitudinal field)

⇒ κ ∼ q
p
GγB (with more accurate tracking)

Rotation axis: r̂ =
kẑ + κx̂√
κ2 + k2

Precession angle: α = 2π

(

√

1 +
(

κ
k

)2 − 1

)

Transverse offset: ∆x =
q

p

Bℓ

k
=
q

p

λ2

2π
B
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Æ Scaling Snakes to He3 �

Scaling of the field at maximum energy:

The maximum rigidity of the beams must the same: rmax = p
q

= 834 Tm

(βγ)x ≃ Z

A
(βγ)p

Want the same precession, so κ must be the same.

Bx ≃ Gpγp

Gxγx
Bp

BHe3 ≃ AGp

ZGHe3
Bp ≃ −0.643Bp

Snake excursion at injection rinj = 81.1 Tm (for protons):

∆y =

{

3.2 cm, for protons
−2.1 cm, for He3
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ÆHelical Spin Rotators �
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ÆRotator Axes and Precession �

To precess the spin from vertical into the
horizontal plane:

sinβ = sinµ cos θ

cosµ = − tan2 θ

µ ∈ [90◦, 270◦]

θ ∈ [−45◦, 45◦] ∪ [135◦, 225◦]

For longitudinal polarization want:

β = Gγ × θD0DX

θD0DX = 3.675 mr
x

y

z

r
θ

β

µ
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ÆDeuterons in a Figure 8 �

G γ=−19

o270− 270o

Partial snakes

• JLAB (Derbenev)

• With no snakes νsp = 0
Rn̂(full turn) = I.

• Weak snake locks spin.

• At Gγ = −19, the net precession around one arc is −14 1
4 rotations.

• Switch between red and green snakes to rotate polarization by 90◦.

• Any injector ring should also be a figure 8 with partial snakes.


 27� Machine Advisory Committee Review
Waldo MacKay 15 September, 2010


